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Radio Losses for Concatenated Codes
S. Shambayati1

The advent of higher powered spacecraft amplifiers and better ground receivers
capable of tracking spacecraft carrier signals with narrower loop bandwidths re-
quires better understanding of the carrier tracking loss (radio loss) mechanism of
the concatenated codes used for deep-space missions. In this article, we present
results of simulations performed for a (7,1/2), Reed–Solomon (255,223), interleaver
depth-5 concatenated code in order to shed some light on this issue. Through
these simulations, we obtained the performance of this code over an additive white
Gaussian noise (AWGN) channel (the baseline performance) in terms of both its
frame-error rate (FER) and its bit-error rate at the output of the Reed–Solomon
decoder (RS-BER). After obtaining these results, we curve fitted the baseline per-
formance curves for FER and RS-BER and calculated the high-rate radio losses for
this code for an FER of 10−4 and its corresponding baseline RS-BER of 2.1× 10−6

for a carrier loop signal-to-noise ratio (SNR) of 14.8 dB. This calculation revealed
that even though over the AWGN channel the FER value and the RS-BER value
correspond to each other (i.e., these values are obtained by the same bit SNR value),
the RS-BER value has higher high-rate losses than does the FER value. Further-
more, this calculation contradicted the previous assumption that at high data rates
concatenated codes have the same radio losses as their constituent convolutional
codes. Our results showed much higher losses for the FER and the RS-BER (by as
much as 2 dB) than for the corresponding baseline BER of the convolutional code.
Further simulations were performed to investigate the effects of changes in the data
rate on the code’s radio losses. It was observed that as the data rate increased
the radio losses for both the FER and the RS-BER approached their respective
calculated high-rate values. Furthermore, these simulations showed that a simple
two-parameter function could model the increase in the radio losses as the data
rate increased for both the FER and the RS-BER. However, further simulations are
required to obtain functions for the two parameters in terms of the loop SNR and
the error rate for which the loss is calculated.

I. Introduction

Concatenated codes were first used for deep-space missions on the Voyager I and II spacecraft [1].
Miller et al. [2] developed a methodology to evaluate the performance of these codes over an additive
white Gaussian noise (AWGN) channel. This methodology modeled the output of the Viterbi decoder as
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a two-state Markov chain where the decoder is in either a waiting mode or a bursty mode. In the waiting
mode, the decoder makes no errors. In the bursty mode, the decoder makes errors. These errors occur
close enough to each other as to constitute a “burst” (for an exact definition of a burst see [2]). The
duration of these bursts as well as the length of the waiting mode could be modeled as geometric random
variables. Following this model, Miller et al. managed to produce a simulation approach that could
quickly simulate the performance of concatenated codes without directly simulating the convolutional
code. This approach was extremely attractive at the time because simulating convolutional codes is an
extremely central processing unit (CPU)-intensive process.

While Miller’s approach was ground breaking and gave a quick way of simulating the performance
of concatenated codes over AWGN channels, it did not address the issue of radio losses that arise when
there is imperfect carrier tracking by the ground receiver. However, at the time the study was published,
knowing the radio losses for these codes was not as critical as it currently is. This was because the
combination of the data rates (at most of the order of tens of kilobits per second) and the receiver
carrier tracking-loop bandwidths (usually greater than 20 Hz) that were used at that time made the
radio losses for the concatenated codes equivalent to the radio losses for the inner (convolutional) code
of the concatenated code, which were well-known and rather easy to calculate [1]. As far as the outer
(Reed–Solomon) code was concerned, the combination of low data rate and large carrier bandwidth made
the channel operate in the low-rate regime. In this regime, the same bit-error rate (BER) at the output of
the Viterbi decoder produced the same performance at the output of the outer code’s decoder. (Briefly, in
the low-rate regime, the coherence time of the carrier tracking loop is much smaller than the transmission
time of a frame. In the high-rate regime, the tracking loop’s coherence time is much larger than the
transmission time of a frame. The medium-rate regime implies that the coherence time of the tracking
loop is roughly the same as the transmission time of a frame. For convolutional codes, the descriptions
of these regimes are identical except for the fact that the frame transmission time is defined as the time
it takes to transmit five constraint lengths’ worth of bits. More exact definitions of these three regimes
are given in Section III).

However, with the advent of the Block V Receiver (BVR) and more powerful spacecraft amplifiers,
the carrier tracking-loop bandwidths that are used can be quite narrow (about 3 Hz), and the data
rates can be quite high (∼1 Mb/s). Therefore, the low-rate model for the outer code no longer applies.
Furthermore, the set of data rates, the loop bandwidths, and the interleaving depths that are used by
most deep-space missions cause most spacecraft links to operate in the medium-rate regime, which does
not have a universal theoretical model [1]. Therefore, it is necessary to simulate the concatenated codes
in order to evaluate the radio losses for these higher data rates and narrower loop bandwidths.

In this article, we present the results of some simulations to evaluate the radio losses for a concatenated
code with the NASA (7,1/2) convolutional inner code and the Reed–Solomon (255,223) outer code with an
interleaving depth of 5. These simulations provide us with the baseline (AWGN) error-rate performance
curves for this code in terms of both the bit-error rate at the output of the Reed–Solomon decoder
(RS-BER) and the frame-error rate (FER). These baseline curves were in turn curve fitted, and the curve
fits were used in the high-rate error-rate function [1] to analytically calculate the radio losses for a loop
signal-to-noise ratio (SNR) of 14.8 dB for an FER of 10−4 and its corresponding baseline RS-BER of
2.1 × 10−6 (an FER value and an RS-BER value correspond to each other if they are obtained from the
same bit SNR value over the AWGN channel). It was shown that, although in terms of the baseline
performance the chosen values of the FER and the RS-BER correspond to each other, the high-rate radio
loss for the RS-BER value was greater than the high-rate radio loss for the FER value. In addition,
these values were compared to the high-rate radio loss for the corresponding baseline convolutional code
BER value. This comparison indicated that the high-rate losses for the FER and the RS-BER were much
greater (by as much as 2 dB for the RS-BER) than the high-rate losses for the convolutional code’s BER.
Further simulations were performed to evaluate the effects of changing the data rate on the medium-rate
radio losses. For this purpose, the demodulation process was simulated for a carrier tracking loop SNR
(LSNR) of 14.8 dB while the data rate was varied from 10 kb/s to 10 Mb/s. It was shown that as the data
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rate increases the radio losses for (7,1/2), RS-(255,223), interleaver depth-5 code approach the theoretical
high-rate losses for both the FER and the RS-BER. Furthermore, this increase could be modeled rather
well through the use of a simple two-parameter function. However, further simulations are necessary to
formalize the relationship among the parameters of this function, the PLL loop SNR, and the error rate
for which the radio loss is calculated.

This article is organized as follows: In Section II, a brief description of the simulation approach that was
used is given. In Section III, the baseline (AWGN) performance of the (7,1/2), RS-(255,223), interleaver
depth-5 code, the analytical methodology for evaluation of high-rate radio losses, and the interpolation
function for evaluation of radio losses as a function of data rate are introduced. In Section IV, the results
of the simulations for radio losses for different data rates are discussed. In Section V, conclusions are
presented.

II. Description of the Simulations

The simulation setup that was used to obtain the radio losses is shown in Fig. 1. Random bits are
encoded with the (7,1/2) convolutional code to generate the channel symbols. A simulated digital phase-
locked loop (PLL) then is used to generate tracking phase errors. A predetermined number of channel
symbols are then multiplied by the cosine of each generated phase error. After this a Gaussian random
variable is added to each symbol. Finally, these symbols are fed to a Viterbi decoder and decoded. The
decoded bits then are compared to the original bits, and the number and the positions of the bits in error
are recorded. From the positions of bits in error, the positions of the bytes in error within Reed–Solomon
frames are then calculated. Subsequently, based on the number of bytes in error per codeword, it is
determined whether or not the frame is in error. Note that under real conditions the white Gaussian
noise is added to the signal before the phase-locked loop. However, since the noise power in both the
in-phase and the quadrature components of the signal is the same, any shift in the phase of the noise
produces another white Gaussian noise process with the same power spectrum. Therefore, this simulation
produces results equivalent to the real conditions at the input of the Viterbi decoder.

A Reed–Solomon frame consists of five (255,223) Reed–Solomon codewords. Each codeword is capable
of correcting 16 bytes. If a codeword has more than 16 bytes in error, it is considered uncorrectable and
in error. Furthermore, it is assumed that a frame is in error if any of its five codewords are in error. The
Reed–Solomon bit-error rate (RS-BER) is calculated by assuming that if a frame is in error then the RS
decoding process does not alter any of the bits received from the Viterbi decoder. Therefore, the bit-error
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Fig. 1.  The simulation setup.
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rate at the output of the Reed–Solomon decoder is equal to the frame-error rate times the bit-error rate
of the convolutional code over those frames that are in error. (Note that while the correctable codewords
in the frame could correct their bits, in actual operations, if a frame is in error it is archived without
any decoding.) From these assumptions, the simulation calculates the FER and the RS-BER. The input
parameters to this simulation are the bit signal-to-noise ratio, Eb/N0, the carrier-to-noise ratio, Pc/N0,
the PLL loop bandwidth, BL, and the number of symbols per single update of the PLL. As the PLL is
digital, the number of symbols that are affected by a single value of phase error depends on the data rate.
Therefore, by changing the number of symbols per single PLL update, the data rate for the simulation is
set.

The PLL that is simulated is a linear digital PLL similar to the one used in the DSN’s Block V Receiver
(BVR) [3]. The update rate for this PLL is set to 2000 Hz: exactly the same as the BVR. For the purpose
of this article, Pc/N0 was set to 24.8 dB-Hz and the loop bandwidth was kept at 10 Hz. The number
of symbols per loop update was varied between 10 symbols per update and 10,000 symbols per update.
This corresponds to varying the data rate from 10 kb/s to 10 Mb/s. In order to illustrate the radio
loss characteristics of this code, we concentrate on the losses for a FER of 10−4 and its corresponding
baseline RS-BER of 2.1×10−6. The values for PLL settings were chosen because they produce a loop
signal-to-noise ratio of 14.8 dB. This loop SNR value causes the radio losses for the inner (convolutional)
code to be rather small (0.21 dB). Since on most current deep-space links a radio loss of 0.3 dB is deemed
acceptable, these settings are likely for a link designed under the assumption that the radio losses for the
concatenated code and its inner code are the same.

III. Baseline Performance and Analytical Calculations

Before we can evaluate radio losses for the (7,1/2), RS-(255,223), interleaver depth-5 concatenated
code, we need to establish the performance of this code over the AWGN channel. This was done by
setting the phase error at the output of the PLL to 0 (i.e., perfect tracking conditions). The results of
this simulation are shown in Fig. 2. As we can see from this figure, the curve for the bit-error rate at the
output of the Viterbi decoder (BER) and the curve for the byte-error rate at the output of the Viterbi
decoder (ByER) have the same general profile except that the byte-error rate is roughly 2.5 times greater
than the bit-error rate. Similarly, at higher bit SNR values, the curve for the bit-error rate at the output
of the Reed–Solomon (RS) decoder (RS-BER) follows the curve for the frame-error rate at the output of
that decoder (FER) except that the frame-error rate is roughly 45 times as great as the RS-BER. Note
that, at low SNR values where the FER value is 1, the RS-BER and the BER curves are identical. This
is due to the assumption that if a frame is in error the RS decoder does not alter any of the bits that it
has received from the Viterbi decoder. Note also that, compared to the BER curves for the (7,1/2) code
in [1] and [3], the BER curve in this article is shifted to the left by 0.3 dB. This is because the simulations
here used real valued symbols instead of the three-bit quantized versions that normally are used in the
DSN’s Viterbi decoders.

These baseline error-rate curves can be curve fitted. For the frame-error-rate and the byte-error-rate
curves, the curve-fit function takes the form

f(x) =

{
exp(α0 − α1x) x > x1

exp(β0 + β1x + β2x
2) x1 > x > x2

1 otherwise
(1)

For the BER curve, the curve-fit function takes the form

fBER(x) =

{
exp(α0 − α1x) x > x1

exp(β0 + β1x + β2x
2) x1 > x > x2

0.5 otherwise
(2)

where x is the bit signal-to-noise ratio in unitless form (not in dB).
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Fig. 2.  Baseline FER, BER, ByER, and RS-BER versus
Eb /No for (7,1/2), RS-(255,223), interleaver depth-5 concat-
enated code.

Due to our assumptions, at low SNR values the RS-BER curve is identical to the BER curve. Therefore,
the curve fit that is used for the RS-BER is given by

fRSB(x) =




exp(α0 − α1x) x > x1

exp(β0 + β1x + β2x
2) x1 > x > x2

fBER(x) otherwise
(3)

The results of these curve fits are shown in Figs. 3(a) through 3(d) and Tables 1 through 3. As can
be seen from Figs. 3(a) through 3(d), these curve fits are rather accurate for the error-rate regions of
interest. Having these curve fits also allows us to rapidly calculate the high-rate losses for this code using
the high-rate model equation for error-rate functions [1,3]:

fhr(x) =
∫ π

−π

fAWGN

(
cos2(φ)x

)
pΦ(φ)dφ (4)

where pΦ(φ) is the probability density function of the phase error at the output of the PLL. This is
assumed to be a Tikhonov density function [1] given by

pΦ(φ) =
exp(ρ cos φ)

2πI0(ρ)
(5)

where I0(ρ) is the zeroth-order modified Bessel function and ρ is the loop signal-to-noise ratio of the PLL.
When an ultrastable oscillator (USO) is used on the spacecraft for modulation of the telemetry, ρ is given
by

ρ =
Pc

N0BL
(6)
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where Pc/N0 is the 1-Hz carrier power-to-noise ratio and BL is the PLL’s loop filter bandwidth. For
non-USO types of spacecraft oscillators, the loop SNR depends on the phase spectrum of the oscillator
and needs to be calculated on a case-by-case basis.

The high-rate error-rate equation is used to calculate the high-rate radio loss, Lhr, in the following
manner: Let re be the desired error rate. Let xAWGN be the value of Eb/N0 for which fAWGN (xAWGN ) = re,
where fAWGN (x) is the error-rate function (either BER, ByER, RS-BER, or FER) over the AWGN
channel. Now let xhr be the value of Eb/N0 such that fhr (xhr) = re, where fhr(x) is the high-rate
error-rate function in Eq. (4). Then the high-rate loss is defined as

Lhr =
xAWGN

xhr
(7)

Note that in unitless terms losses are always less than 1 and are, therefore, less than 0 dB. However, by
convention, when referring to losses in terms of dB, the negative sign is dropped. In this article, this
convention is followed.

It should be noted that, since the PLL has a filter, statistical dependence exists between consecutive
phase estimates of the PLL. A PLL with a filter loop bandwidth of BL has a coherence time of TL = 1/2BL.
In other words, phase estimates within TL seconds of each other are dependent. Otherwise they are
independent.
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Table 1. Curve-fit parameters for the log-linear portion of the curve
fit for different error-rate curves for (7,1/2), RS-(255,223), interleave
depth-5 concatenated code.

Function α0 α1

BER 4.4649 6.161

ByER 4.9013 5.8389

RS-BER 88.0343 64.9705
(low-error-rate portion)

FER 89.9583 66.2451

Table 2. Curve-fit parameters for the log-quadratic portion of the curve fit for
different error-rate curves for (7,1/2), RS-(255,223), interleave depth-5 con-
catenated code.

Function β0 β1 β2

BER −1.4347 3.077 −3.4661

ByER −0.742 2.9382 −3.2697

RS-BER −159.7969 254.4975 −103.2711
(low-error-rate portion)

FER −198.7073 314.5291 −124.4003

Table 3. Curve-fit boundary points for different error-rate curves
for (7,1/2), RS-(255,223), interleave depth-5 concatenated code.

Function x1 x2

BER 1.06097 0.44668

ByER 1.06736 0.44668

RS-BER 1.44459 1.30765
(low-error-rate portion)

FER 1.44701 1.29304

The high-rate error-rate equation, Eq. (4), assumes that a single independent PLL estimate of the
phase affects an entire frame. Since this is an asymptotic behavior, it implies that when the high-rate
model applies, TL � TF , where TF is the time it takes to transmit one frame. Conversely, the low-rate
model assumes that many independent phase estimates affect a single frame. In other words, TL � TF .
Therefore, the frame sees the average reduction in SNR due to phase errors. This leads to the low-rate
model equation for error rates [1,3]:

flr(x) = fAWGN

(
x

∫ π

−π

cos2(φ)pΦ (φ) dφ

)
(8)

and the low-rate model loss equation:
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Llr =
∫ π

−π

cos2(φ)pΦ (φ) dφ (9)

Note that Eq. (9) is independent of the type of code, the type of error (frame, bit, RS-bit, or byte), or
the error rate. This simply indicates that the error-rate curve is shifted to the right by Llr.

Typically, the radio losses are defined in terms of an interpolation between the high-rate radio loss,
Lhr, and the low-rate radio loss, Llr. The interpolation usually takes the form of [1,3]

Lactual(dB) = (1 − a)Llr(dB) + aLhr(dB) (10)

where a is dependent on the ratio of loop coherence time, TL, to frame transmission time, TF . Kinman
[3] has proposed using the following equation for a:

a =
1

1 + c1

(
TL

TF

)−c2
(11)

where c1 and c2 are determined based on the code, the loop SNR, and the error rate of interest. This
equation will be used to curve fit the results of our radio loss simulations.

In order to illustrate the effects of data-rate changes on radio loss, we will evaluate the radio loss for a
frame-error rate of 10−4 and its corresponding baseline RS-BER of 2.1×10−6 for all the data rates under
consideration. Over an AWGN channel, these error rates are achieved with an Eb/No of 1.837 dB. For
the same value of Eb/No, the values of BER and ByER are given in column 2 of Table 4. Using Eq. (7)
to evaluate the high-rate losses for these error measures with a 14.8-dB loop SNR, column 3 of Table 4 is
obtained. As we can see from Table 4, the lower the error-rate values are over the AWGN channel, the
higher are the high-rate losses for the error measure. The low-rate loss at a 14.8-dB loop SNR as obtained
by Eq. (9) is 0.144 dB. These numbers are used to analytically validate the results of our simulations.

Table 4. Different error measures, their values for 1.837 dB Eb/N0 over an
AWGN channel, and their high-rate and low-rate losses for a loop SNR of
14.8 dB.

High-rate loss Low-rate loss
Error Error-rate with 14.8-dB with 14.8-dB

measure value loop SNR, loop SNR,
dB dB

BER 7.2 × 10−3 0.213 0.144

ByER 1.8 × 10−2 0.212 0.144

FER 1.0 × 10−4 2.020 0.144

RS-BER 2.1 × 10−6 2.376 0.144
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IV. Radio Loss Simulation Results for Different Data Rates

The results of these simulations are shown in Figs. 4(a) through 4(d). These figures depict the BER,
the ByER, the FER, and the RS-BER curves, respectively, as the number of symbols per PLL phase
update (and consequently the data rate) is increased. It should be noted that for this particular set of
simulations the number of symbols per PLL phase update happens to correspond to the data rate in kb/s
due to the code rate and the update rate of the PLL. These figures also include respective analytical
high-rate model error-rate curves obtained by using Eq. (4). In addition, Figs. 4(c) and 4(d) include the
low-rate error-rate curves obtained from Eq. (8). Figures 4(a) and 4(b) indicate that the BER and the
ByER curves trace their respective high-rate error-rate curves rather closely. This indicates that, for all
the data rates under consideration, the constituent (7,1/2) convolutional code operates in the high-rate
regime. According to [1], for a loop bandwidth of 10 Hz, the high-rate regime applies for the (7,1/2) code
at roughly 1 kb/s. This corresponds well with the results shown in Figs. 4(a) and 4(b).

However, the story is different for Figs. 4(c) and 4(d). These figures show that for both the FER and
the RS-BER at lower data rates, the error-rate curves are far to the left of their respective analytical
high-rate error-rate curves. However, as the number of symbols per phase update increases, the error-
rate curves approach the analytical high-rate error-rate curves. When the number of symbols per phase
update is greater than 500 (corresponding to a data rate of 500 kb/s), Figs. 4(c) and 4(d) indicate that,
for a given error rate, the simulation results are within 0.2 dB of the theoretical high-rate curves. Note
that some of the FER and the RS-BER curves for high values of the number of symbols per update are
rather rough and irregular. This is because for these values several frames at a time are affected by a
large error in the PLL estimate of the phase. This causes frame errors to occur in bursts. Therefore,
even though a simulation result may include 100 frame errors, these errors could occur in only a few
bursts (10 to 20). Therefore, no statistical smoothing occurs. This is especially true at low error rates
where a burst of errors could significantly skew the error rate. To smooth these curves, more simulations
are needed. However, due to the amount of time that it takes to perform these simulations, it was not
deemed practical to do so.

In order to characterize the increase in the radio losses as the data rate increases, for each of the values
of symbols per update, we evaluated the radio losses for an FER of 10−4 and its corresponding AWGN
RS-BER of 2.1× 10−6. These results are plotted in Figs. 5(a) and 5(b). As these figures indicate, as the
data rate increases so does the radio loss until the radio loss plateaus at a data rate of approximately
500 kb/s. This corresponds to a TL/TF of 2.45. This agrees well with our definition of the high-rate
regime provided in the previous section. Note that the high-rate radio losses on these curves are within
0.2 dB of the analytical high-rate losses calculated in Section III.

Finally, we attempted to curve fit the changes in radio losses as the data rate increases as a function of
the ratio of the loop coherence time, TL, to the frame transmission time, TF . The results of these curve
fits also are shown in Figs. 5(a) and 5(b). The curve-fit parameters, c1 and c2, are shown in Table 5.
As we can see from the figures, the curve fits are rather accurate. Therefore, the function in Eq. (11) is
a rather good model for the interpolation factor. However, unless further simulations for different error
rates and different loop SNR values are performed, we cannot define specific functions for c1 and c2 in
terms of loop SNR and error rates nor can we reach any further conclusions regarding the dependence of
radio losses on TL/TF value. Unfortunately, such simulations will take a long time to perform and may
not be practical at this time.
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Fig. 4.  Error rate versus Eb /No for different values of symbols per PLL phase update, 14.8-dB loop SNR, 10-Hz loop
bandwidth: (a) BER, (7,1/2) convolutional code, (b) ByER, (7,1/2) convolutional code, (c) FER, (7,1/2), RS-(255,223) inter-
leaver depth-5 concatenated code, and (d) RS-BER, (7,1/2), RS-(255,223) interleaver depth-5 concatenated code.
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Fig. 4.  Cont’d.
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Fig. 5.  Radio loss and radio loss curve fit versus symbols per PLL phase update (data rate in kb/s), 14.8-dB
loop SNR, 10-Hz loop bandwidth, (7,1/2), RS-(255,223) interleaver depth-5 concatenated code: (a) FER =
1     10-4 and (b) RS-BER = 2.1     10-6.

(b)
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RS-BER RADIO LOSS FIT

Table 5. Curve-fit parameters for the interpolation
function for FER and RS-BER radio losses.

Error
c1 c2

measure

FER 0.089 1.405

RS-BER 0.121 1.304

V. Conclusions

In this article, results of a series of simulations performed for evaluation of radio losses for the (7,1/2),
RS-(255,223), interleaver depth-5 concatenated code have been presented. These results show that

(1) Accurate curve-fit functions could be obtained for both the Reed–Solomon bit-error rate
(RS-BER) and the frame-error rate (FER) for this code. These curve fits could then be
used to calculate high-rate radio losses rather accurately.

(2) At very high data rates, the assumption that concatenated codes have the same radio losses
as their constituent convolutional codes is wrong. This assumption could lead to very large
underestimation of the radio losses in the power budget for the link (by about 2 dB in the
case of an RS-BER of 2.1 × 10−6 and a 14.8-dB loop SNR).

(3) A simple two-parameter function could be used to interpolate between the high-rate and
low-rate radio losses for the medium-rate radio losses. Further simulations are required to
find further relationships between the parameters of this function and the PLL loop SNR
and the error-rate value for which the loss is calculated.
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